Difference between revisions of "Metaball SOP"

From TouchDesigner Documentation
Jump to: navigation, search
(TD Editor)
Line 7: Line 7:
 
 
 
[[Image:MetaExample2.jpg]]
 
[[Image:MetaExample2.jpg]]
+
{{SubSection
=== <div class="subSectionLineSOP"> Level of Detail for Metaball Display</div> ===
+
|title=Level of Detail for Metaball Display
+
|text=You can change the level of detail of the metaball and NURBS display by adjusting the Level of Detail parameter in the Display Option Dialog &gt; Viewport page &gt; <span class="tipTextSOP">Level of Detail</span> option. To open the Display Options Dialog, press "p" in a SOP viewport.
You can change the level of detail of the metaball and NURBS display by adjusting the <span class="tipTextSOP">Level of Detail</span> parameter in the Display Option Dialog &gt; Viewport page &gt; <span class="tipTextSOP">Level of Detail</span> option. To open the Display Options Dialog, press "p" in a SOP viewport.
+
}}
+
{{SubSection
=== <div class="subSectionLineSOP"> Better Metaball Shading Tip</div> ===
+
|title=Better Metaball Shading Tip
+
|text=Accurate metaball normals will be computed if the normal attribute exists when conversion to polygons is done. Thus, to get improved shading on polygonized metaballs, it's a good idea to add the normal attribute (i.e. use a [[Facet SOP]]) before converting the metaballs.
Accurate metaball normals will be computed if the normal attribute exists when conversion to polygons is done. Thus, to get improved shading on polygonized metaballs, it's a good idea to add the normal attribute (i.e. use a [[Facet SOP]]) before converting the metaballs.
+
}}
 
|OPlabel=Metaball
 
|OPlabel=Metaball
 
|OPlicense=Non-Commercial
 
|OPlicense=Non-Commercial
Line 103: Line 103:
 
{{ParDynamicMenu
 
{{ParDynamicMenu
 
|Parorder=4
 
|Parorder=4
|Parsummary=There are four different metaball interpretations: <span class="tipTextSOP">Wyvill</span>, <span class="tipTextSOP">Elendt</span>, <span class="tipTextSOP">Blinn</span> and <span class="tipTextSOP">Links</span>. See the [[:Category:Geometry|Geometry]] articles for illustrations of the differences between these.
+
|Parsummary=There are four different metaball interpretations: Wyvill, Elendt, Blinn and Links. See the [[:Category:Geometry|Geometry]] articles for illustrations of the differences between these.
 
|Parlabel=Kernel Function
 
|Parlabel=Kernel Function
 
|OPtype=metaball
 
|OPtype=metaball
Line 112: Line 112:
 
{{ParFloat
 
{{ParFloat
 
|Parorder=5
 
|Parorder=5
|Parsummary=The <span class="tipTextSOP">XY Exponent</span> determines inflation / contraction in the X and Y axes.
+
|Parsummary=The XY Exponent determines inflation / contraction in the X and Y axes.
 
|Parlabel=XY Exponent
 
|Parlabel=XY Exponent
 
|OPtype=metaball
 
|OPtype=metaball
Line 120: Line 120:
 
{{ParFloat
 
{{ParFloat
 
|Parorder=6
 
|Parorder=6
|Parsummary=The <span class="tipTextSOP">Z Exponent</span> determines inflation / contraction in the Z axis.
+
|Parsummary=The Z Exponent determines inflation / contraction in the Z axis.
 
=== <div class="subSectionLineSOP"> What is an Exponent?</div>===
 
 
In the instance of metaballs, the exponent determines the inflation towards "squarishness" or contraction towards "starishness" as described below:
 
 
* Value &gt; 1 - Results in metaballs that appear more like a "star".
 
* Value &lt; 1 - Results in metaballs that appear more "squarish".
 
* Value = 1 - Results in metaballs that appear spherical.
 
 
|Parlabel=Z Exponent
 
|Parlabel=Z Exponent
 
|OPtype=metaball
 
|OPtype=metaball
Line 141: Line 133:
 
|OPfamily=SOP
 
|OPfamily=SOP
 
|Parname=normals
 
|Parname=normals
}}
+
}}
 +
{{SubSection
 +
|title=What is an Exponent?
 +
|text=In the instance of metaballs, the exponent determines the inflation towards "squarishness" or contraction towards "starishness" as described below:
 +
 +
* Value &gt; 1 - Results in metaballs that appear more like a "star".
 +
* Value &lt; 1 - Results in metaballs that appear more "squarish".
 +
* Value = 1 - Results in metaballs that appear spherical.
 +
}}
 
{{History
 
{{History
 
}}
 
}}

Revision as of 14:32, 24 May 2018

  • Invalid title: ""

Summary
[edit]

The Metaball SOP creates metaballs and meta-superquadric surfaces. Metaballs can be thought of as spherical force fields whose surface is an implicit function defined at any point where the density of the force field equals a certain threshold. Because the density of the force field can be increased by the proximity of other metaball force fields, metaballs have the unique property that they change their shape to adapt and fuse with surrounding metaballs. This makes them very effective for modeling organic surfaces. For example, below we have a metaball. The surface of the metaball exists whenever the density of the metaball's field reaches a certain threshold:

MetaExample1.jpg

When two or more metaball force fields are combined, as in the illustration below, the resulting density of the force fields is added, and the surface extends to include that area where the force fields intersect and create density values with a value of one. For more information on metaballs, see Metaballs.

MetaExample2.jpg

Level of Detail for Metaball Display[edit]

You can change the level of detail of the metaball and NURBS display by adjusting the Level of Detail parameter in the Display Option Dialog > Viewport page > Level of Detail option. To open the Display Options Dialog, press "p" in a SOP viewport.

Better Metaball Shading Tip[edit]

Accurate metaball normals will be computed if the normal attribute exists when conversion to polygons is done. Thus, to get improved shading on polygonized metaballs, it's a good idea to add the normal attribute (i.e. use a Facet SOP) before converting the metaballs.

PythonIcon.png[[{{{opClass}}}]]

Template:ParToggle Template:ParFloat Template:ParFloat Template:ParFloat Template:ParDynamicMenu Template:ParFloat Template:ParFloat Template:ParToggle

What is an Exponent?[edit]

In the instance of metaballs, the exponent determines the inflation towards "squarishness" or contraction towards "starishness" as described below:

  • Value > 1 - Results in metaballs that appear more like a "star".
  • Value < 1 - Results in metaballs that appear more "squarish".
  • Value = 1 - Results in metaballs that appear spherical.

TouchDesigner Build:

SOPs
Add • Alembic • Align • Arm • Attribute Create • Attribute • Basis • Blend • Bone Group • Boolean • Box • Bridge • Cache • Cap • Capture Region • Capture • Carve • CHOP to • Circle • Clay • Clip • Convert • Copy • CPlusPlus • Creep • Curveclay • Curvesect • DAT to • Deform • Delete • Divide • Extrude • Facet • File In • Fillet • Fit • Font • Force • Fractal • Grid • Group • Hole • Import Select • In • Introduction To SOPs id • Inverse Curve • Iso Surface • Join • Joint • Kinect • Lattice • Limit • Line • Line Thick • LOD • LSystem • Magnet • Material • Merge • Metaball • Model • Noise • Null • Object Merge • Oculus Rift • OpenVR • Out • Particle • Point • Polyloft • Polypatch • Polyreduce • Polyspline • Polystitch • Primitive • Profile • Project • Rails • Raster • Ray • Rectangle • Refine • Resample • Revolve • Script • Select • Sequence Blend • Skin • Sort • Sphere • Spring • Experimental:Sprinkle • Sprite • Stitch • Subdivide • Superquad • Surfsect • Sweep • Switch • Text • Texture • Torus • Trace • Trail • Transform • Trim • Tristrip • Tube • Twist • Vertex • Wireframe • ZED

An Operator Family that reads, creates and modifies 3D polygons, curves, NURBS surfaces, spheres, meatballs and other 3D surface data.

Any floating window that is not a Pane or Viewer.